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Abstract

We present a completely automated Structure and Mo-
tion pipeline capable of working with uncalibrated images
with varying internal parameters and no ancillary informa-
tion. The system is based on a novel hierarchical scheme
which reduces the total complexity by one order of magni-
tude. We assess the quality of our approach analytically
by comparing the recovered point clouds with laser scans,
which serves as ground truth data.

1. Introduction

In recent years, Structure and Motion (SaM) pipelines
able of processing batches of images and to output a 3D
reconstruction without making any assumptions on the im-
aged scene and on the acquisition rig [3, 15, 24, 31, 14] are
making their way toward “real world” applications and out
of their former intended scope of urban reconstruction.

The main challenges to be solved are computational ef-
ficiency (in order to be able to deal with more and more
images) and generality.

As for the first issue, several different solutions has been
explored: the most successful have been those aimed at re-
ducing the impact of the bundle adjustment phase, which —
with feature extraction — dominates the computational com-
plexity.

A class of solutions that have been proposed are the so-
called partitioning methods [8]: they reduce the reconstruc-
tion problem into smaller and better conditioned subprob-
lems which can be effectively optimized. Two main strate-
gies can be distinguished.

The first one is to tackle directly the bundle adjustment
algorithm, exploiting its properties and regularities. The
idea is to split the optimization problem into smaller, more
tractable components[26, 17]. The computational gain of
such methods is obtained by limiting the combinatorial ex-
plosion of the algorithm complexity as the number of im-

ages and feature points increases.

The second strategy is to select a subset of the input im-
ages and feature points that subsumes the entire solution
[8, 18, 23, 9]. The advantage of these methods over their se-
quential counterparts lays in the fact that they improve error
distribution on the entire dataset and bridge over degenerate
configurations. Anyhow, they work for video sequences, so
they cannot be applied to unordered, sparse images.

A recent paper [25] that works with sparse dataset de-
scribes a way to select a subset of images whose recon-
struction provably approximates the one obtained using the
entire set. This considerably lowers the computational re-
quirements by controllably removing redundancy from the
dataset. Even in this case, however, the images selected are
processed incrementally. Moreover, this method does not
avoid computing the epipolar geometry between all pairs of
images.

There is actually a third solution covered in literature,
orthogonal to the aforementioned approaches. In [1], the
computational complexity of the reconstruction is tackled
by throwing additional computational power to the prob-
lem. Within such framework, the former algorithmical chal-
lenges are substituted by load balancing and subdivision of
reconstruction tasks. Such direction of research strongly
suggest that the current monolithical pipelines should be
modified to accommodate ways to parallelize and optimally
split the workflow of reconstruction tasks.

In this direction goes [6], in which the authors propose
a new hierarchical and parallelizable scheme for SaM. The
images are organized into a hierarchical cluster tree, and the
reconstruction proceeds hierarchically along this tree from
the leaves to the root. Partial reconstructions correspond
to internal nodes, whereas images are stored in the leaves.
This scheme provably cuts the computational complexity
by one order of magnitude (provided that the dendrogram
is well balanced), and it is less sensible to typical problems
of sequential approaches, namely sensitivity to initialization
[27] and drift [5]. This approach has some analogy with
[21], where a spanning tree is built to establish in which



order the images must be processed. After that, however,
the images are processed in a standard incremental way.

The generality issue — mentioned before — refers to the
assumptions made on the input images, or, equivalently to
the amount of ancillary information that is required in ad-
dition to pixels values. Existing pipelines either assumes
known internal parameters [3, 14], or constant internal pa-
rameters [31, 15], or relies on EXIF data plus external in-
formations (camera CCD dimensions) [24]. To the best of
our knowledge, despite autocalibration with varying param-
eters have been introduced several years ago [ 9], no work-
ing SaM pipeline have been demonstrated yet with varying
parameters and no ancillary information.

The contribution of this paper are twofold: first, building
on [60], we introduce a clustering strategy derived from the
simple linkage that makes the dendrogram more balanced,
thereby reducing the actual complexity of the method. Sec-
ond, we endow the SaM pipeline with the capability of deal-
ing with uncalibrated images with varying internal parame-
ters and no ancillary information. To this end, we devised
a quasi-Euclidean initialization step that is crucial to make
autocalibration converge.

The rest of the paper is organized as follows. The next
section outlines the matching stage, then Sec. 3 describes
the way the hierarchical cluster tree is built with the balanc-
ing heuristics. Section 4 presents the hierarchical approach
to structure and motiohn recovery, whereas the autocalibra-
tion strategy is explained in Sec. 5. Experimental results
are reported in Sec. 6, and finally conclusions are drawn in
Sec. 7.

2. Keypoint Matching

The keypoint matching stage is fairly standard, and
mainly follows the approach of [2] and [24]. The details are
reported in [6]. The output of this stage is a set of tracks,
i.e., keypoints matching in more than three images, and a
set of fundamental matrices and homographies linking pairs
of views, each one endowed with GRIC (Geometric Robust
Information Criterion) [28] scores, that reveals which of the
two models is more likely.

3. Views Clustering

The second stage of the pipeline proposed in [6] consists
in organizing the available views into a hierarchical cluster
structure (a tree) that will guide the reconstruction process.
This procedure allows to decrease the computational com-
plexity with respect to the sequential SaM pipeline, from
O(n®) to O(n?) in the best case, i.e. when the tree is well
balanced (n is the number of views). If the tree is unbal-
anced this computational gain vanishes. It is therefore cru-
cial to enforce the balancing of the tree and this is the goal
of the technique that we shall describe in this section.

Figure 1. An example of one image (top left) from “Piazza Bra”

and its six closest neighbors according to the affinity defined in
Eq. 1.

The method starts from an affinity matrix among views,
computed using the following measure, that takes into ac-
count the number of common keypoints and how well they
are spread over the images:
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where S; and S; are the set of matching keypoints in image
I; and I, respectively, C H(-) is the area of the convex hull
of a set of points and A; (A;) is the total area of the image.
Figure 1 shows an example of the neighborhood defined by
this affinity.

Then, views are grouped together by agglomerative clus-
tering, which produces a hierarchical, binary cluster tree,
called dendrogram. The general agglomerative clustering
algorithm proceeds in a bottom-up manner: starting from
all singletons, each sweep of the algorithm merges the two
clusters with the smallest distance. In particular, [6] uses
the simple linkage strategy, which specifies that the distance
between two clusters is to be determined by the distance of
the two closest objects (nearest neighbors) in the different
clusters.

In order to produce better balanced trees, we modified
the agglomerative clustering strategy as follows: starting
from all singletons, each sweep of the algorithm merges the
pair with the smallest cardinality among the ¢ closest pair
of clusters. The distance is computed according to the sim-
ple linkage rule. The cardinality of a pair is the sum of the
cardinality of the two clusters.

In this way we are softening the “closest first” agglomer-
ative criterion by introducing a competing “smallest first”
principle that tends to produce better balanced dendro-
grams. The amount of balancing is regulated by the pa-
rameter £: when ¢ = 1 this is the standard agglomerative
clustering with no balancing; when £ > n/2 (n is the num-
ber of views) a perfect balanced tree is obtained, but the
clustering is poor, since distance is largely disregarded. We
found in our experiments (see Sec. 6) that a good compro-
mise is £ = 5.

Figure 2 shows an example of balancing achieved by our
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Figure 2. An example of the dendrogram produced by [0] (left) and the more balanced dendrogram produced by our technique (right) on a

52-views set, with £ = 5.

technique. The height of the tree is reduced from 14 to 9
and more initial pairs are present in the dendrogram on the
right.

There is a caveat, however, that must be applied when
building clusters of cardinality two. These are pair of im-
ages from which the reconstruction will start, hence care
must be taken to avoid pairs related by homographies. This
is tantamount to say that the fundamental matrix must ex-
plain the data far better than an homography, and this can
be implemented by considering the GRIC, as in [20]. We
therefore modify the linkage strategy so that two views ¢
and view j are allowed to merge in a cluster only if:

gric(F; ;) < a gric(H; ;) witha > 1, (2)

where gric(F; ;) and gric(H; ;) are the GRIC scores ob-
tained by the fundamental matrix and the homography ma-
trix respectively (we used a = 1.2). If the test fail, consider
the second closest elements and repeat.

4. Hierarchical Structure and Motion

The dendrogram produced by the clustering stage im-
poses a hierarchical organization of the views that will be
followed by our SaM pipeline. At every node in the den-
drogram an action must be taken, that augment the recon-
struction (cameras + 3D points): a two views reconstruction
is performed when a cluster is first created, then there can
be the addition of a single view to an existing cluster or the
merging of two clusters. The first two are the typical oper-
ations of a sequential pipeline, whereas the latter is unique
to the hierarchical pipeline.

The reconstruction starts uncalibrated, and as soon as an
uncalibrated cluster reaches a given dimension m, the Eu-
clidean upgrade procedure is triggered!. Please note that
autocalibration is triggered only for nodes (clusters) of car-

!In principle autocalibration with known skew and aspect ratio requires
a minimum of m = 4 views to work; for good measure we used m = 12.

dinality > m with both children of cardinality < m, other-
wise, if the cardinality of one child was > m it would have
been already upgraded to Euclidean.

4.1. Two-views reconstruction.

The reconstruction from two views is always projective
in this pipeline, and proceeds from the fundamental matrix.
It is well known that the following two camera matrices:

Pi=[1|0] and P =[fes]xF |es],  (3)

yield the fundamental matrix F', as can be easily verified.

This canonical pair is related to the correct one (up to
a similarity) by a collineation H of 3D space. Section 5
will describe how to guess a matrix H that provides a well
conditioned starting point for the subsequent autocalibra-
tion step.

Given the upgraded versions of the perspective projec-
tion matrices Py H and P> H, the position in space of the
3D points is then obtained by triangulation (Sec. 4.1.1) and
projective bundle adjustment is run to improve the recon-
struction.

4.1.1 Triangulation.

Triangulation (or intersection) is performed by the iterated
linear LS method [12]. Points are pruned by analyzing the
condition number of the linear system and the reprojection
error. The first test discards ill-conditioned 3D points, us-
ing a threshold on the condition number of the linear sys-
tem (104, in our experiments). The second test applies the
so-called X84 rule [10], that establishes that, if e; are the
residuals, the inliers are those points such that

|6i — medj ej\ < 5.2med; |€z‘ — medj 6j|. 4)
4.2. One-view addition.

The reconstructed 3D points that are visible in the view
to be added provides a set of 3D-2D correspondences, that



are exploited to glue the view to the cluster. This can be
done by linear exterior orientation [7] or by resection with
DLT [!1], depending on whether the cluster corresponds to
a Euclidean or projective reconstruction (a single view is
always uncalibrated). MSAC [29] is used in both cases in
order to cope with outliers. The view that has been glued
might have brought in some new tracks, that are triangulated
as described before (Sec. 4.1.1). Finally, bundle adjustment
is run on the current reconstruction (either Euclidean or pro-
jective).

4.3. Clusters merging.

When two clusters merge the respective reconstructions
live in two different reference systems, that are related by
a similarity — if both are Euclidean — or by a projectivity
of the space — if one is uncalibrated. The points that they
have in common are the tie points that serve to the purpose
of computing the unknown transformation, using MSAC to
discard wrong matches. When merging a Euclidean clus-
ter and a projective one, an homography of the projective
space is sought that brings the second onto the first, thereby
obtaining the correct Euclidean basis for the second. Once
the cameras are registered, the common 3D points are re-
computed by triangulation (Sec. 4.1.1), and the tracks ob-
tained after the merging as well. The new reconstruction is
eventually refined with bundle adjustment (either Euclidean
or projective).

5. Autocalibration

As we saw previously, the reconstruction starts uncal-
ibrated and the Euclidean upgrade procedure is triggered
as soon as a cluster reaches a given dimension m. Hence,
we assume that a projective reconstruction is available, and
we want to upgrade it to the Euclidean level, using the con-
straints coming from the dual absolute quadric (DIAQ) [30].
The DIAQ elegantly encodes both intrinsic parameters and
the plane at infinity in a single 4 x 4 matrix of rank 3. The
basic relationship that links the DIAQ to the absolute conic
is the following:

wi =K, K/ =P,Q, P (5)

This equation can be used to transfer known constraints
over the calibration parameters of each camera to the DIAQ
which, being symmetric, can be encoded as a homogeneous
vector of ten elements. The resulting linear system can then
be solved using the direct linear transform algorithm, even-
tually followed by a non-linear optimization step.

Our implementation of the iterative dual linear autocali-
bration algorithm is based on the method described in [22],
modified to use the weights of [20] and to enforce at ev-
ery iteration the positive (negative) semi-definitess of the

DIAQ. As explained in [13], the closest semi-definite ap-
proximation of a matrix in Frobenius norm can be obtained,
assuming a single offending value, zeroing the eigenvalue
with sign different from the others. This can be easily done
during the rank-three approximation step of the original al-
gorithm. Several informal tests, not reported here, demon-
strated this algorithm to have better convergence properties
of both its parents [22, 20].

Nevertheless, a good initialization is crucial to obtain
convergence to the correct solution. To this end we de-
vised an initialization procedure that provides a useful, well
conditioned starting point for the subsequent autocalibra-
tion step. The canonical pair of camera matrices

Py =[I]0] and P> =[Q:|e2], (6)
is related to the Euclidean one by a collineation H of 3D
space that has the following structure:

(N

v 1

H—{K% 0]

If reasonable assumptions on internal parameters of the
cameras K and K5 can be made, the most critical part in
order to recover the Euclidean structure is having a good es-
timate of the plane at infinity, which is related to v in Eq. 7.
In the following we shall see how to obtain a consistent es-
timate of v given a guess of K; and K.

The upgraded, metric versions of the perspective projec-
tion matrices are equal to:

PP =[K;|0]~PH (8)

Py = K> [Rolta] ~ PyH = [Q2K1 +eav'|es]  (9)
The rotation Ry can therefore be equated to the following:

Ry~ K" (@K1 +eav!) = Ky 'QeKy +tov! (10)

in which it is expressed as the sum of a 3 by 3 matrix and
arank 1 term. Let R* be the rotation such that: R*ty, =
[llt2]l 0 0] . Left multiplying it to Eq. 10 yields:

w

——
R*Ry ~ R* K;'Q.K; +[||t2]| 00] v (11)

Calling the first term W and its rows w;r , we arrive at the
following:
wi !+ t2fvT
R*Ry=| wy' /llws| (12)

W3

in which the last two rows of the right hand side are inde-
pendent from the value of v. Since the rows of the right
hand side form a orthonormal basis, we can recover the first
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one taking the cross product of the other two. Vector v is
therefore equal to:

v = (w2 x ws /|l wsl|| — w1) /[|t2]] (13)

As a guess on the internal parameters we used, as cus-
tomary, zero skew, unit aspect ratio and focal length equal
to the magnitude of the image diagonal.

In case of failure of the autocalibration procedure the re-
construction remains projective and will be upgraded later
on by merging with a Euclidean one.

Up in the tree, after autocalibration, an estimate of the in-
ternal parameters of each camera is available. They will be
refined further with bundle adjustment as the reconstruction
proceeds. In order to not to hamper the computation too
much, the internal parameters of a camera becomes fixed
as soon as they have been bundle-adjusted together with at
least k cameras (we used k = 25).

6. Experiments

We tested our pipeline (henceforth called SAMAN-
THA+) on several datasets of pictures. Here we report the
largest that have been used, namely “Piazza Bra” (from
http://profs.sci.univr.it/~fusiello/demo/samantha/) and
“Duomo” (courtesy of Visual Computing Lab (ISTI-CNR),
Pisa). Figure 3 and 4 illustrate the reconstruction from
these datasets.

Our pipeline works with uncalibrated images with vary-
ing internal parameters. The “Duomo” dataset contains pic-
tures taken with three different camera settings, whereas
“Piazza Bra” was originally taken with constant parame-
ters. We therefore added 31 images taken from Flickr to

Figure 4. A top view and two perspective views of the reconstruction of “Duomo” (Pisa, Italy).

the dataset, and discarded the information of which images
are from the original dataset. In such a way, the internal
parameters of each camera are treated independently of the
others.

6.1. Time efficiency

We compared our results with those produced by
SAMANTHA [6] and by BUNDLER [4] (an implementation
of a state-of-the-art sequential SaM pipeline in C++).

Table 1 reports the result of the comparison with
BUNDLER. Only time spent doing BA (C++ implementa-
tion of [16]) is reported, because BA dominates the com-
putational complexity after matching, and BUNDLER is ex-
tremely slow in the matching phase, as it matches every
view to every other. Moreover our pipeline is partially writ-
ten in Matlab, so the total execution time would have been
meaningless. All experiments were run on the same hard-
ware (Intel Core2 Duo E4600@2.4Ghz, 2Gb ram).

The figures show that SAMANTHA+ takes significantly
less time than BUNDLER, without any major difference in
terms of number of reconstructed views and points. The to-
tal speed up achieved with respect to bundler is 13 and 4.8
for “Piazza Bra” and “Duomo” respectively, which com-
pares favorably with the speed-up reported in [25] (on dif-
ferent dataset, though).

The improvement in the computing time is achieved
thanks to the balancing strategy in the construction of the
dendrogram. The effect of this strategy can be appraised
in Fig. 5, where the number of reconstructed points/views
and the computing time for “Piazza Bra” are plotted as the
number of closest pairs £ is increased. After ¢ = 5 the com-



Table 1. Comparison between BUNDLER and SAMANTHA+. Each row lists, for the two approaches: name of the dataset; number of
images; number of reconstructed views; number of reconstructed points; running time (only BA).

BUNDLER SAMANTHA+
Dataset #img | # views # points time | #views #points time
Piazza Bra 411 292 41703 12:16h 332 53634 58 min
Pisa 309 309 105401 13:43h | 309 121047  2:57h

©-# views
A-# points
“*-time
£-tree height

percentage

L L L L L L L L L L L L |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 5. This plot shows the number of reconstructed points,
views, height of the tree and computing time as a function of the
parameter £ in the balancing heuristics. The values on the ordinate
are in percentage with respect to the baseline case £ = 1 which
correspond to the original simple-linkage clustering of [6].

puting time stabilizes at around 30% of the baseline case
(which corresponds to SAMANTHA [6]), without any signif-
icant difference in terms of number of reconstructed views
and points.

It can also be noted that, as theory prescribes in [0], the
computing time is directly linked to the height of the tree.

6.2. Metric accuracy

Thanks to the availability of ground truth for both
datasets obtained from laser scanning, we were able to as-

Figure 6. A view of “Duomo” reconstruction (blue) superimposed
to the ground truth (red).

sess the accuracy of our results. We subsampled the cloud
of points generated from laser scanners in such a way that
they have roughly double the number of points of our recon-
struction, then we run Iterative Closet Point (ICP) in order
to find the best similarity that brings our data onto the model
(see Fig. 6). The residual distances between closest pairs are
measured and their average — the reconstruction accuracy —
is about 35cm for “Piazza Bra” and 15cm for “Duomo”.
The final error of BUNDLER on the same datasets is 17cm
for “Duomo”, whereas for “Piazza Bra” BUNDLER failed to
produce a meaningful result.

7. Conclusions and Future Work

We presented a novel Structure and Motion pipeline that
— for the first time — deals with uncalibrated images with
varying internal parameters and no ancillary information.
Moreover the pipeline improves on efficiency, with respect
to the state of the art, thanks to a hierarchical scheme
based on a balanced agglomerative clustering of the im-
ages. The accuracy of our approach has been assessed an-
alytically by comparing the recovered point clouds with
laser scans, which serves as ground truth data. Future
work will aim at improving the efficiency of the overall
pipeline and the performances of the autocalibration proce-
dure. Data and additional material are available from from
http://profs.sci.univr.it/~fusiello/demo/samantha/.
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