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ABSTRACT:

A novel multi-view stereo reconstruction method is presented. The algorithm is focused on accuracy and it is highly engineered with
some parts taking advantage of the graphics processing unit. In addition, it is seamlessly integrated with the output of a structure and
motion pipeline. In the first part of the algorithm a depth map is extracted independently for each image. The final depth map is
generated from the depth hypothesis using a Markov random field optimization technique over the image grid. An octree data structure
accumulates the votes coming from each depth map. A novel procedure to remove rogue points is proposed that takes into account the
visibility information and the matching score of each point. Finally a texture map is built by wisely making use of both the visibility
and the view angle informations. Several results show the effectiveness of the algorithm under different working scenarios.

1 INTRODUCTION

The goal of Multi-view Stereo (MVS) is to extract a dense 3D sur-
face reconstruction from multiple images taken from known cam-
era viewpoints. This is a well studied problem with many practi-
cal and industrial applications. Laser scanners yield to very accu-
rate and detailed 3D reconstructions. However, they are based on
expensive hardware, difficult to carry and rather complex to set,
especially for large-scale outdoor reconstructions. In all these
cases, MVS can be applied successfully.

In this paper we present a novel multiview stereo method. The
algorithm is focused on accuracy and it is highly engineered with
some parts taking advantage of the GPU. In addition, it is seam-
lessly integrated to the output of an underlying structure and mo-
tion (SaM) pipeline (Gherardi et al., 2011). As a matter of fact,
sparse structure endowed with visibility information is very re-
liable and can improve both speed and accuracy of a MVS al-
gorithm by reducing the search space and the ambiguities. Fol-
lowing (Campbell et al., 2008) a number of candidate depths are
first extracted for each pixel of the image. These hypothesis are
used as input of a Markov Random Field (MRF) optimization to
extract a final depth map. Votes for each depth map are accumu-
lated on a discrete 3D volume and an iterative technique based on
visibility is employed to remove spurious points. Finally, a mesh
is generated using the Poisson reconstruction algorithm (Kazhdan
et al., 2006) and textures are applied on it.

The paper is structured as follows: in Section 2 the most rele-
vant multiview stereo techniques are reviewed, in Section 3 the
method is presented and in Section 4 results are shown on chal-
lenging and real datasets. Finally in Section 5 conclusions are
drawn.

2 PREVIOUS WORK

The problem of reconstructing a 3D scene from multiple views,
have been tackled by many researchers. In (Seitz et al., 2006) sev-
eral multiview stereo algorithms are presented and a taxonomy is

drawn. According to the authors, six fundamental properties dif-
ferentiate MVS algorithms: reconstruction algorithm, scene rep-
resentation, photoconsistency measure, visibility model, shape
prior and initialization requirements. We will follow this general
taxonomy to present the evolution of multiview stereo algorithms.

According to (Seitz et al., 2006), there are mainly four classes of
multiview stereo techniques. In the first one, a surface is gener-
ated by the definition of a cost function directly on a 3D volume
(Seitz and Dyer, 1999, Treuille et al., 2004). Several heuristics
can be carried out to extract the surface. Some approaches ex-
tract an optimal surface by defining a volumetric MRF (Roy and
Cox, 1998, Vogiatzis et al., 2005, Sinha and Pollefeys, 2005, Fu-
rukawa, 2008, Kolmogorov and Zabih, 2002). A second class
of algorithms is composed by methods that iteratively find an
optimal surface by minimizing a cost function. Space carving
is a popular technique that falls into this category. An initial
conservative surface is defined to contain the entire scene vol-
ume and it is iteratively modeled by carving away portion of
volumes considering visibility constraints (Kutulakos and Seitz,
2000, Slabaugh et al., 2004). The third category is composed
by methods that compute a depth map for each view (Szeliski,
1999a, Kolmogorov and Zabih, 2002, Gargallo and Sturm, 2005).
These depth maps can be merged as a post process stage (Naraya-
nan et al., 1998). The fourth class is composed by algorithms that,
instead of performing dense matching for each pixel, extract and
match a subset of feature points for each image and then fit a sur-
face to the reconstructed features (Manessis et al., 2000, Taylor,
2003).

The scene can be represented in many ways in a reconstruction
pipeline. Many times it is represented by a discrete occupancy
function (e.g. voxels) (Fromherz and Bichsel, 1995, Vogiatzis
et al., 2005) or a function encoding distance to the closest sur-
face (e.g. level sets) (Faugeras and Keriven, 2002, Pons et al.,
2005). Some algorithms represent the scene as a depth map for
each input view (Szeliski, 1999a, Drouin et al., 2005). The dif-
ferent depth maps can be merged into a common 3D space at
a later stage. Other algorithms make use of polygon meshes to
represent the surface as a set of planar polygons. This represen-



tation can be used in the central part of a reconstruction pipeline
since it is well-suited for visibility computation (Fua and Leclerc,
1995) or it can be computed in the final part, starting from a dense
points cloud (Kazhdan et al., 2006, Hiep et al., 2009, Vu et al.,
2012). Many modern algorithms employ different representation
over their reconstruction pipeline. Our algorithm, for example,
falls into this category.

According to (Seitz et al., 2006), photoconsistency measures may
be defined in scene space or image space. When photoconsis-
tency is defined in scene space, points or planar polygons are
moved in 3D and the mutual agreement between their projec-
tions on images is evaluated. This can be done by using the
variance (Seitz and Dyer, 1999, Kutulakos and Seitz, 2000) or a
window matching metric (Jin et al., 2003, Hernández Esteban and
Schmitt, 2004). This is the prevalent case and also our algorithm
implicitly works in scene space. Normalized cross correlation
is the most commonly used window based matching metric. In
contrast, image space methods use the scene geometry to create a
warping between images at different viewpoints. The photocon-
sistency measure is given by the residual between the synthetic
and original views (Pons et al., 2005, Szeliski, 1999b). Some al-
gorithms use also silhouettes (Fua and Leclerc, 1995, Sinha and
Pollefeys, 2005, Hernández Esteban and Schmitt, 2004) or shad-
ows (Savarese et al., 2001) to enhance the reconstruction. How-
ever, this techniques are very sensitive to light changes.

A visibility model is used to specify which views to consider
when matching regions or pixels using photo consistency. A
common approach is to use a predicted estimation of the ge-
ometry to determine the visibility model (Fromherz and Bich-
sel, 1995, Kutulakos and Seitz, 2000, Kutulakos, 2000, Vogiatzis
et al., 2005, Hernández Esteban and Schmitt, 2004, Sinha and
Pollefeys, 2005). Other methods simply use clusters of nearby
cameras (Hernández Esteban and Schmitt, 2004, Savarese et al.,
2001), or employ different heuristics to detect outliers views and
do not consider them during reconstruction(Hernández Esteban
and Schmitt, 2004, Kang et al., 2001, Gargallo and Sturm, 2005,
Drouin et al., 2005). Instead, our method exploits the robust vis-
ibility information coming from a structure and motion pipeline.

Shape priors are often implicitly or explicitly imposed to the gen-
erated surface in order to bias the reconstruction to have desired
characteristics. Some methods search for a minimal surface either
imposing to start from a gross initial shape, by smoothing points
with high-curvatures (Tasdizen and Whitaker, 2004, Diebel et al.,
2006, Sinha and Pollefeys, 2005) or by imposing planarity (Fua
and Leclerc, 1995, Furukawa et al., 2009). Other methods implic-
itly search for a maximal surface since they does not impose any
surface smoothness (Fromherz and Bichsel, 1995, Seitz and Dyer,
1999, Kutulakos, 2000, Kutulakos and Seitz, 2000, Treuille et al.,
2004, Saito and Kanade, 1999). Finally some approaches opti-
mize an image-based smoothness terms (Szeliski, 1999a, Kang
et al., 2001, Kolmogorov and Zabih, 2002, Gargallo and Sturm,
2005, Campbell et al., 2008). This kind of prior fits nicely into
2D MRF solvers.

In addition to a set of calibrated images, many algorithm require
additional information on the scene to bound the reconstruction.
Usually this is done by defining a rough bounding box (Kutu-
lakos and Seitz, 2000, Kutulakos, 2000, Vogiatzis et al., 2005,
Campbell et al., 2008) or by simply limiting the range of dispar-
ity values in image space methods (Szeliski, 1999a, Kolmogorov
and Zabih, 2002, Gargallo and Sturm, 2005).

In recent years, many algorithms have shifted the focus on large
scale reconstructions. This is a challenging problem, since deal-
ing more data leads to computational and robustness problems.

In (Hiep et al., 2009) the large scale reconstruction problem is
solved by defining a minimum s-t cut based global optimization
that transforms a dense point cloud into a visibility consistent
mesh followed by a mesh-based variational refinement that cap-
tures small details, smartly handling photoconsistency regular-
ization and adaptive resolution. The computation can be carried
on the graphics processing unit (GPU) (Vu et al., 2012), knock-
ing down the computing times. Multi-view stereo algorithms are
well-suited for general purpose GPU programming (GPGPU),
since many of their tasks can be executed in parallel. In (Fu-
rukawa et al., 2010) the large scale problem is solved with a di-
vide et impera solution. The collection of photos are decomposed
into overlapping sets that can be processed in parallel, and finally
merged. The algorithm have been successfully tested on datasets
with over ten thousand images, yielding a 3D reconstruction with
nearly thirty million points.

Figure 1: An example of structure and motion (cameras) pro-
duced by Samantha.

3 METHOD

In this section a novel multiview stereo method will be presented.
The algorithm resembles (Campbell et al., 2008) in some parts
since it uses a similar MRF depth map optimization at its core.
Some parts have been implemented to run on GPU.

The focus of the method is on accuracy and on tight integration
with our structure and motion pipeline “Samantha” (Gherardi et
al., 2011), which produces a sparse cloud of 3D keypoints (the
“structure”) and the internal and external parameters of the cam-
eras (the “motion”); see Fig.1. The method is completely auto-
matic, as no user input is required.

3.1 Extraction of depth hypothesis

The goal of this phase is to extract a number of candidates depths
for each pixel m and for each image Ii. These hypothesis will
be later used as labels in a MRF that extracts the final depth
map δi(m). Similarly to many multiview stereo algorithms, a
pixel-level matching along epipolar lines is used, with Normal-
ized Cross Correlation (NCC) as the matching metric, which gives
a good tradeoff between speed and robustness to photometric nui-
sances.



Every depth map is created independently from the others. The
extraction of candidate depths is performed by considering the
reference image Ii and a number (we used three) of neighboring
viewsN (Ii). The choice of the near views can be critical. To ob-
tain as much information as possible one should be assured that
the neighbor view are viewing the very same part of the scene.
This is nearly impossible to estimate without an a-priori knowl-
edge of the scene.

To solve this problem, we leverage on the sparse structure and
the visibility information provided by Samantha, with a simple
“overlap” measure based on the Jaccard index:

dJ(I1, I2) =
|V(I1) ∩ V(I2)|
|V(I1) ∪ V(I2)|

(1)

where I1 and I2 are two images and V(I) is the set of 3D key-
points visible in image I . By choosing the three views with the
highest overlap measure with Ii we are implicitly guaranteed that
they are close to Ii and looking at the same part of the scene.

The candidate depths for each pixel are searched along the optical
ray, or equivalently, along the epipolar line of each neighboring
image using block matching and NCC. In this way, a correlation
profile Cj(ζ), parameterized with the depth ζ, is computed for
every pixel m and every neighbor image Ij ∈ N (Ii).

As suggested by (Campbell et al., 2008) candidates depth corre-
spond to local peaks of the correlation (peaks with a NCC value
lower than 0.6 are discarded). In principle:

δi(m) = arg localmaxζ Cj(ζ) j ∈ N (i) (2)

where localmax is an operator that returns a fixed number of lo-
cal maxima. In practice, each of the local peaks of Cj(ζ) casts a
vote (weighted by its score value) on a discrete histogram along
the optical ray. At the end of the process, the k bins of the his-
tograms with the highest score are retained (we used k = 5) as
the candidate depths for the pixel. These k candidate depths for a
point m are stored in the map δ and the corresponding correlation
values in the map γ.

The number of histogram bins can be critical to the accuracy of
the algorithm. In order to avoid any loss of fine details, we keep
track of the depth inside each bins using a moving average ap-
proach, where the weight is given by the match score itself.

3.1.1 Depth Range estimation The search range of each pixel
depth can heavily impact the performance of the algorithm: an
effective heuristic to delimit the search range improve both the
running times and the candidate depths estimates.

Some algorithms assume the depth range to be known, but this as-
sumption does not hold in many real cases. The search range can
be limited by approximating a global surface or independently for
each pixel.

A first order approximation is represented by a bounding volume,
which can be readily extracted from the SaM point cloud. The
intersection of the optical ray with the volume is easy to compute,
but the resulting search range on the optical ray can be still too
wide.

In order to limit further the search range of the candidate depth,
we compute the boundary independently for each pixel by using
the information coming from the structure and motion. For each
image pixel we consider the five closest keypoints that have been
reconstructed by Samantha. Let x denote the corresponding 3D
keypoint position and let xo be its projection on the optical ray

x

x0

Depth range of 

m

 m

Figure 2: The depth range of a pixel m (black square) is estimated
using the closest keypoints (black circles). Every keypoint have
a corresponding 3D point x, which projects onto the optical ray
of m at x0 and produces a depth interval of radius ||x − x0||
centered at x0. The union of these intervals is the depth range of
m.

of the pixel. The search range along the optical ray is defined
as the union of the (five) intervals with center in xo and radius
||x− xo||. An example is shown in Fig. 2.

3.1.2 Rectification Rectification is a widely used technique
in stereo analysis, however it is not very common in the multiple
view framework. Given two views, rectification forces the epipo-
lar line to be parallel and horizontal (Fusiello et al., 2000). The
idea behind rectification is to define two new camera matrices
which preserve the optical centers but with image planes paral-
lel to the baseline. The computation of the correlation window
on horizontal lines avoid the need of bilinear interpolation, and
lends itself easily to GPU implementation.

The images in the rectified space are linked to the original image
space by a 2D homography. As a consequence, any point on the
epipolar line is linked by a 1D homography to the same epipo-
lar line expressed in the original space. The general multiview
stereo framework is thus unchanged; matching is performed in
rectified space and transformed back in original space by means
of an homography.

(a) (b)

Figure 3: An example of depth map before (a) and after (b) the
MRF optimization. The map (a) shows the the candidate depth
with the best score.



3.2 Depth Map generation

The final depth map is generated from the depth hypothesis using
a discrete MRF optimization technique over the (regular) image
grid. The MRF assigns a label l ∈ {l1 . . . lk, lk+1} to each pixel
m, where the first k labels correspond to the candidate depths and
lk+1 is the undetermined state. The cost function to be minimized
consist – as customary – of an unary function Edata that depend
on the value at the pixel and a smoothness term Esmooth that
depends on pairwise interaction.

The smoothness term is modeled as described in (Campbell et al.,
2008), whereas the data term is based on (Ganan and McClure,
1985):

Edata(m, l) = 1−
lγ(m)2

lγ(m)2 + |N (i)| (3)

where lγi(m) is the NCC peak score of the lth candidate depth
for pixel m — as explained in Section 3.1 – and |N (i)| is the
number of neighboring views of Ii. The undetermined label is
given a fixed score of 0.4. With respect to the original formu-
lation, the Geman-McClure score function improve further the
robustness against spurious matches.

The MRF is solved with a sequential tree-reweighted message
passing optimization (Kolmogorov, 2006) that we implemented
in CUDA. An example of depth map optimization is shown in
Fig. 3.

3.3 Visibility accounting

Depth maps are lifted in 3D space to produce a photoconsistency
volume ϕ, represented by an octree that accumulates the scores
coming from each depth map δi.

Figure 4: Rogue points (red) can be identified as occlusors of
actual surface points (green).

In order to avoid any loss of accuracy, a moving average approach
have been used inside each bin. At the end of the lifting pro-
cess, each cell x contains a 3D point position pos(x) - which
can be shifted with respect to the cell center - and a photocon-
sistency value ϕ(x) given by the sum of the correlation scores of
the points that fall in that bin.

(a) (b)

Figure 5: An example of photoconsistency volume (with color)
before (a) and after (b) the spurious points removal.

The photoconsistency volume at this stage contains a lot of spu-
rious points, which do not belong to a real surface (see Fig. 5.a
for an example). They are characterized by two features: i) their
photoconsistency is generally lower than actual surface points,
and ii) they usually occludes actual surface points (Fig. 4).

This observation leads to an iterative strategy where the photo-
consistency of an occlusor is decreased by a fraction of the pho-
toconsistency of the occluded point. Points with negative pho-
toconsistency are eventually removed. The procedure is summa-
rized in Algorithm 1. An example of rogue points removal is
shown in Fig. 5.

Algorithm 1 VISIBILITY SPURIOUS POINTS REMOVAL

Input: photoconsistency map ϕ(x)
Output: photoconsistency map ϕ(x)

1. For each image Ii:

(a) Project each point x s.t. ϕ(x) > 0 on image Ii.

(b) Group projected points in pixel cells and order them
by depth.

(c) For each cell:

i. let xk be the point with the highest ϕ(x) visible
by image Ii.

ii. for each point x occluding xk:
ϕ(x)← ϕ(x)− ϕ(xk)/|V(xk)|

2. Remove points x s.t. ϕ(x) < 0.

3. Remove isolated points.

4. Iterate through steps 1,2,3 until no more points are removed.

Algorithm 2 MULTIVIEW STEREO

Input: N images I1 . . . IN

Output: photoconsistency map ϕ(x)

1. Initialize ϕ(x) = 0

2. For each image Ii, build the depth map δi as follows:

(a) for each point m ∈ Ii,

i. for each Ij with j ∈ N (i) (neighborhood of Ii)
ii. compute Cj(ζ), the NCC of m along its epipolar

line in Ij ,
iii. compute depths candidates for m: δi(m) =

arg localmaxζ Cj(ζ) with j ∈ N (i),
iv. record the correlation score of the candidates in:

γi(m) = Cj(δi(m)) for some j.

(b) assign a unique depth to every point of Ii, by MRF
relaxation of the depth map δi, and update γi accord-
ingly.

3. For each depth map δi, lift it in 3D space as follows

(a) for each point m ∈ δi,

i. ϕ(x) = ϕ(x) + γi(m) where x is the point at
depth δi(m) along the optical ray of m in Ii.

4. Remove spurious points using visibility (Algorithm 1),

5. Compute approximate normal at each point,

6. Run Poisson surface reconstruction.



At the end of the process a surface is generated using the Poisson
algorithm (Kazhdan et al., 2006). A normal for each 3D point is
computed by fitting a plane using the closest neighbors. Normal
direction is disambiguated with visibility.

Finally a texture map is built by wisely making use of both the
visibility and the view angle information.

The overall procedure is summarized in Algorithm 2. As an ex-
ample, Fig. 6 shows the reconstructed surface of a marble artifact
from 7 pictures of size ≈ 15 Mpixels.

Figure 6: Reconstructed surface of a marble artifact. Please ob-
serve how the fine details are reproduced.

4 RESULTS

In order to test our algorithm, we run it on several real-cases
datasets from the MVS benchmark presented in (Strecha et al.,
2008). The datasets are public and can be downloaded from the
author website1. They are composed of challenging urban scenes.
In particular, a fountain, a church gate and a yard have been cap-
tured. The number of images ranges from a minimum of 8 to a
maximum of 30, the size being ≈ 6 Mpixels.

The results are reported in Figs. 7, 8. Although camera matrices
were already available, we run Samantha with known internal pa-
rameter to produce structure and camera matrices.

From a qualitative point of view, our method matches the best
results of the benchmark. Unfortunately, at the time of writing,
the benchmarking service was not available, so we cannot show
a quantitative comparison.

The running time of the method is linear with respect to the num-
ber of views. On the average, it took about 10 minutes to generate
candidate depth hypothesis for each depth map and 30 seconds to
compute the MRF optimization. The rogue points removal based
on visibility took from 5 to 10 minutes to compute, while the
mesh generation with took Poisson from 10 to 20 minutes. All the
experiments were carried out on a entry level machine equipped
with a Quad-Core 3.2Ghz CPU and a GeForce GTX 460 GPU.

1http://cvlab.epfl.ch/˜strecha/multiview/denseMVS.html

5 DISCUSSION

In this work we presented a novel multiview stereo algorithm
that fully takes advantage of the output of a structure and motion
pipeline. The experiments carried out showed the effectiveness
of the method with real cases. Future developments will aim to
knock down the computing times by moving more computation
on the GPU (specifically, the stereo correlation ) and to develop
of specific a detail-preserving surface generation algorithm.
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